Sam Keene

“Clean Room”

In clean room design, you take care of your dirty stuff first. Before you do any stage in the program, you look at things that can go wrong. Before you do the operational step, you look at the possibility of the things that can go wrong, and then you either address the ones that can go wrong satisfactorily—and if it—if there are no problems, then you go ahead and do the next steps, so it does the exception—it does the exception handling first and then the default—it does the operational steps. So, it’s very defensive. This has the effect of not delaying handling your code aberrations and your exception conditions to the end. A lot of times we think we’re going to handle things at the end—“Well, I’ll get back to that—first I’ll get it working and then I’ll get back to it.” That’s what we think. But time doesn’t allow us to go back—we have good intentions—just like a New Year’s resolution—we’re going to get back and take care of that, but time runs out and we’re not measuring—sometimes we’re not measured enough on how we handle the exception—we’re measured on how many “KSLOC of code” (thousands of source lines of code) we’ve developed and when we’re operational. That’s what measured on. So, with the clean room design, we’re forced—there’s a discipline—where we have handle the—address the possible exceptions first, and then if there are no exceptions, we go ahead and execute the step. And this has a benefit in areas where you—you want the highest integrity, and it has a very low fault rate when you execute code that way.

