Sam Keene

"SW Reliability is Dependent on Process and Requirements"

If you want to improve the reliability of the software, the best way to do that’s to improve the reliability of the underlying process. The underlying process has to have focus in requirements development. One of the biggest susceptibilities of reliability—one of the biggest susceptibilities of reliability problems—is not having good definition of requirements and also definition of interfaces. We tend to be a little myoptic in our views as technical people. We don’t look across the bridges—the bridges to hardware, the bridges to the human, the bridges to the different modules—anything we can do to improve our focus and definition, enumeration of requirements, and especially across the interfaces to hardware and other systems, will greatly impact our reliability. We think of requirements, too, it’s more important than just asking what the software must do; we also have to be explicit in what we do not want it to do. For instance, if we have a missile that we launch from one of our carriers—and it’s heat seeking—we don’t want that missile to turn around and hit us, because we are also a hot body. So, our requirements have to specify all the things you want it to do, as well as what you do not want it to do. That’s probably the biggest opportunity in improving reliability is to get the requirements down—done correctly. And requirements focus—how do we get better requirements? One way is through things like quality functional deployment, where we have a peer session where we generate the requirements, with the customer present, and we have the customer rate his preferences for various needs that he has in the system, and we work those against the ways we’re going to deliver. So we have a matrix of our approach to solving the problem versus the customer’s enumeration of the problem, and the rating he puts on the various aspects. That’s a strong way of doing it. Another way of doing—of getting good requirements—is through prototypes, where we have iterative designs, we call spiral model, where we have a set of requirements, we develop an early prototype—it doesn’t have all the function, but it has enough that the customer can experience, work with. And then the customer is able to critique what he likes and what more he wants. And through a succession of refinements to that model, we can come to a good product definition. A third way of getting a good requirements, the first being through QFD (quality functional deployment), and the second a prototype—the third is through incremental design, incremental design, where we’ve taken that design and we continue to improve it. So, the customer has a design and is able to use it, and then the customer sees new ways that he’d like to have it enhanced. And what we’d like to do is have those increments done on a periodic basis, like every 6 months, so we don’t have to force changes into the design at the last minute without putting it through the same process—diligence that we’ve done before. And there comes the word “process” again. The reliability of the software can be directly proportional to the quality of the process that we have deployed.

